Modulation of carcinogen metabolism and DNA interaction by calcium glucarate in mouse skin.
نویسندگان
چکیده
Almost all the polycyclic aromatic hydrocarbons (PAHs) require metabolic activation to exert their carcinogenic activity. Environmental carcinogen [(3)H] benzo[a]pyrene (BP) is carcinogenic only after its metabolic transformation to a reactive intermediate, which can then bind to cellular macromolecules. Inhibition of dimethylbenz anthracene- (DMBA-) DNA binding generally accompanied inhibition of tumor initiation as most inhibitors of initiation interfere with the metabolic activation of the initiator. The importance of carcinogen-DNA interaction and the enzymes involved in the metabolism of carcinogenic polycyclic hydrocarbons has led to a search for inhibitors that would be useful in modifying the cancer-causing effects of the PAHs. We tested the effect of calcium glucarate (Cag), a naturally occurring nontoxic compound, on carcinogen metabolism and DNA interaction. Cag inhibited [(3)H] BP binding to both calf thymus DNA in vitro and to epidermal DNA in vivo. Application of Cag to mouse skin caused a dose-dependent inhibition of [(3)H] BP binding to epidermal DNA. To establish the relevance of the in vivo results to the in vitro situation, we followed the in vitro effect of Cag on [(3)H] BP binding to calf thymus DNA and observed that Cag inhibited the [(3)H] BP binding to calf thymus DNA in the presence of microsomes prepared from animals treated with DMBA. We also studied related events like DNA synthesis and carcinogen metabolism. For assessing the DNA synthesis, thymidine kinase was used as marker. Cag caused a dose-dependent inhibition of DMBA-induced thymidine kinase activity. At the same time, Cag caused a marked inhibition of DMBA-induced aryl hydrocarbon hydroxylase (AHH) activity, an enzyme responsible for the metabolism of PAHs like BP, both in vivo and in vitro. Our study indicates that Cag exerted its antitumor effect possibly by inhibiting the carcinogen-DNA binding, which appears to be due to reduced DNA synthesis and AHH activity.
منابع مشابه
Calcium glucarate prevents tumor formation in mouse skin.
OBJECTIVE Calcium Glucarate (Cag), Ca salt of D-glucaric acid is a naturally occurring non-toxic compound present in fruits, vegetables and seeds of some plants, and suppress tumor growth in different models. Due to lack of knowledge about its mode of action its uses are limited in cancer chemotherapy thus the objective of the study was to study the mechanism of action of Cag on mouse skin tumo...
متن کاملEstrogen Metabolism and Detoxification
It is now well known that one of the most prominent causes of breast cancer, as well as many other hormone related health problems in both men and women, is excessive estrogen exposure from both endogenous and exogenous sources. Improving estrogen metabolism can be of benefit in women with various conditions and family histories, including a family history of breast, uterine, or ovarian cancer,...
متن کاملModulation of radiation induced changes in nucleic acid content of liver of Swiss albino mouse by Tinospora cordifolia (Miers)
Background: Radiotherapy is the main modality of cancer treatment. There are many chemical radioprotectors which unfortunately have lethal or toxic effect. Therefore the search is on to find out natural plant based radioprotectors. A well known medicinal plant,which is more acceptable to the body, Tinospora cordifolia, was tested in animal tissues against gamma radiations. Radioprotectiv...
متن کاملA common regulator for the operons encoding the enzymes involved in D-galactarate, D-glucarate, and D-glycerate utilization in Escherichia coli.
Genes for D-galactarate (gar) and D-glucarate (gud) metabolism in Escherichia coli are organized in three transcriptional units: garD, garPLRK, and gudPD. Two observations suggested a common regulator for the three operons. (i) Their expression was triggered by D-galactarate, D-glucarate, and D-glycerate. (ii) Metabolism of the three compounds was impaired by a single Tn5 insertion mapped in th...
متن کاملModulation of radiation and cadmium induced biochemical changes in mouse kidney by Emblica officinalis Linn
Background: Protective effect of Emblica against radiation and cadmium induced biochemical changes in mouse kidney has been studied. Materials and Methods: Adult male mice were divided into seven groups: I (shamirradiated), II (cadmium chloride), III (irradiated with 2 Gy gamma rays), IV (radiation and cadmium chloride), V (Cadmium chloride and Emblica), VI (radiation and Emblica), VII...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 79 1 شماره
صفحات -
تاریخ انتشار 2004